

CE-OST: Contour Emphasis for One-Stage Transformer-based Camouflage Instance Segmentation

Thanh-Danh Nguyen^{1,2}, Duc-Tuan Luu^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Thanh Duc Ngo^{1,2}

¹University of Information Technology, Ho Chi Minh City, Vietnam,

²Vietnam National University, Ho Chi Minh City, Vietnam,

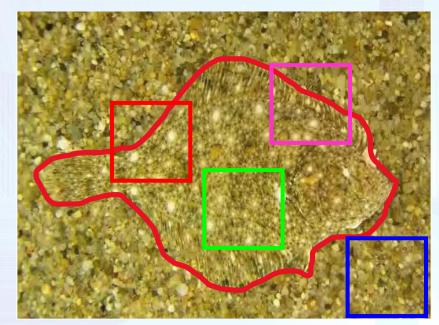
{danhnt, tuanld, tiepnv, thanhnd}@uit.edu.vn, †corresponding author

Content

- 1. Introduction to Camouflage Instance Segmentation
- 2. Related work
- 3. Our proposed CE-OST framework
 - Contour Emphasis Block
 - One-stage Transformer-based CIS
- 4. Experiments
- 5. Conclusion

1. Introduction

- "Camouflage" is a defense mechanism that animals use to conceal their appearance by blending in with their environment
- Applications: search-and-rescue work, wild species discovery and preservation, medical diagnostic, etc.

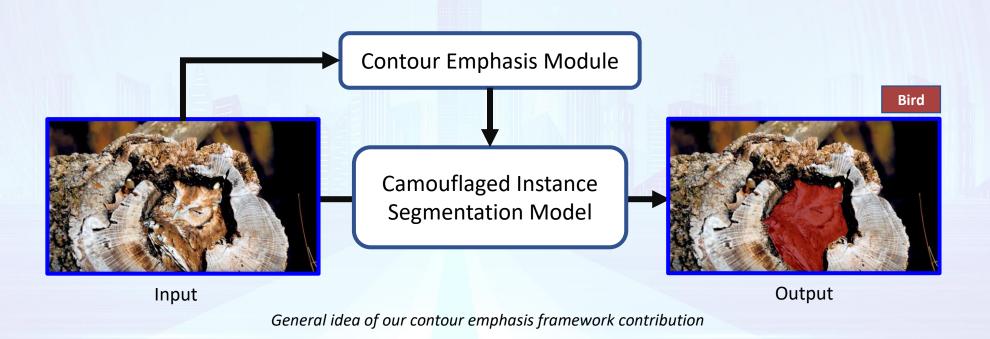


Exemplary camouflaged samples extracted from CAMO++ dataset

1. Introduction

Focused challenge: Camouflaged instances are "visually transparent", their colors and textures are similar to the background

Cropped textures:


Instance region Background region

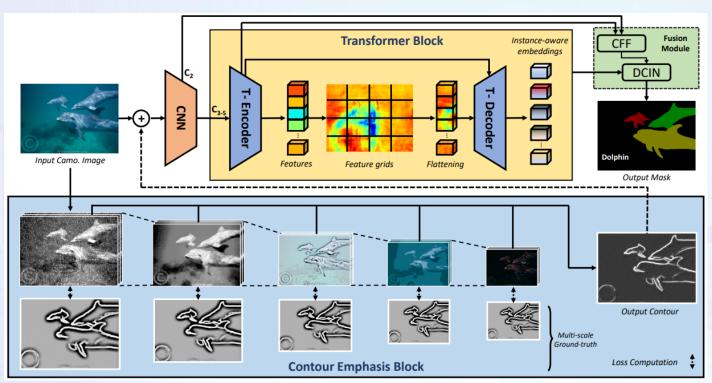
Visual texture comparison among regions in a camouflaged image

1. Introduction

Contribution: we propose Contour Emphasis approach for One-Stage Transformer-based Camouflage Instance Segmentation, dubbed CE-OST

2. Related work

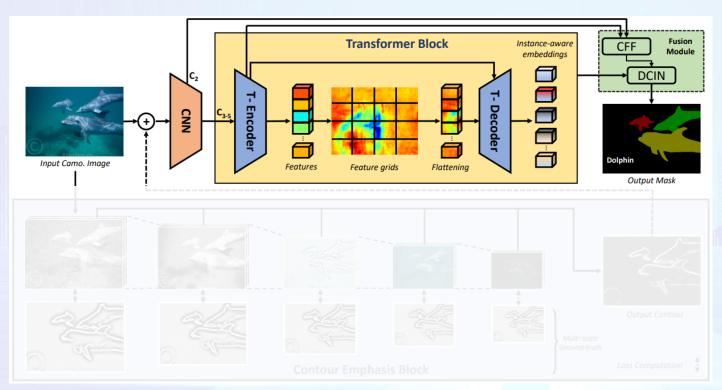
- Camouflaged research is attractive to the community with various tasks
- Common approaches: using Hand-crafted features and using Deep features
- Instance segmentation models: one-stage and two-stage architectures
- Camouflaged Datasets: COD10K, NC4K, CAMO, and CAMO++ are among the potential camouflage datasets with fine-grained annotations


Dataset	#Annot.	#Meta-	#Obj.	Bbox.	Obj.	Ins.	
Dataset	Camo. Img.	Cat.	Cat.	GT	Mask GT	Mask GT	
CAMO [2]	1,250	2	8	×	✓	×	
COD10K [19]	5,066	5	69	✓	✓	\checkmark	
NC4K [32]	4,121	5	69	✓	✓	\checkmark	
CAMO++ [31]	2,695	10	47	✓	✓	\checkmark	

Tab. Comparison among camouflage datasets (w/o non-camouflaged images)

CE-OST has 2 main components: ► A Contour Emphasis Block

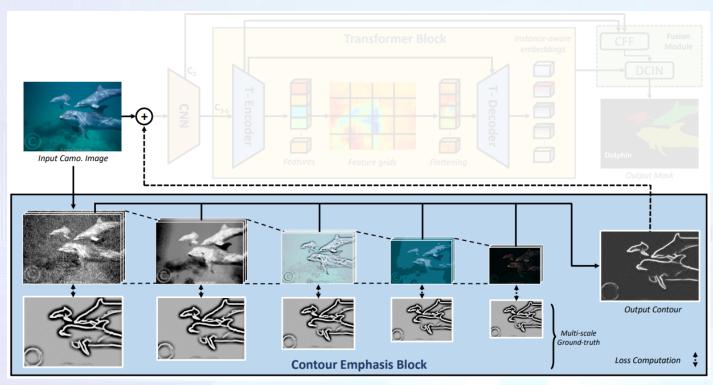
► A Transformer-based Instance Segmentation Block



CE-OST enhances the contour features at image-level to boost
the performance the camouflaged
instance segmentation model

Overall our CE-OST framework: Contour Emphasis for One-Stage Transformer-based Camouflage Instance Segmentation

A Transformer-based Instance Segmentation Block: relied on Transformer architecture with self-attention mechanism

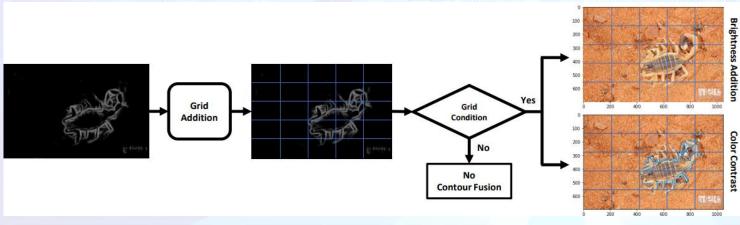


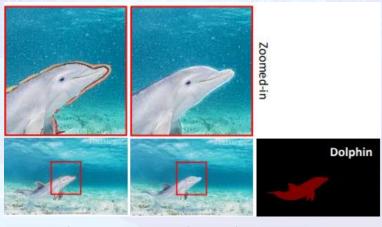
- Inspired by OSFormer, a onestage Transformer architecture
- Pre-trained backbones from OSFormer: ResNet-50, ResNet-101, SwinT, PVT
- Precise positional embeddings, necessary for instance segmentation

Focus: Transformer Block

Contour Emphasis Block: a multi-scale CNN (VGG-16 backbone) learning to perform edge detection*, then fuse them with the original camouflaged image

- CE Block is pretrained on BSD500, a dataset for edge detection
- Total loss is the summary of Cross-entropy loss computed at each scale
- The final output contour is combined with the original image thanks to a Grid-Condition


Focus: Contour Emphasis Block


Grid-Condition: A grid 5×5 is applied to each image. Not boundary fusion if the number of eliminated cells is over half. A cell is eliminated if the number of pixels in the detected boundary area covers over a half area of the cell.

Two ways of enhancement:

- Brightness Addition: add pixel-wise value to the original image
- Color Contrast: add pixel wise contrast value to the original image

Our Grid-Condition to control the Contour Emphasis

Exemplary contour emphasized images on CAMO++

4. Experiments

- State-of-the-art comparison among one-stage and two-stage methods
- Our CE-OST achieved the highest AP score at 43.2% on COD10K and 45.1% on NC4K thanks to the contour emphasizing

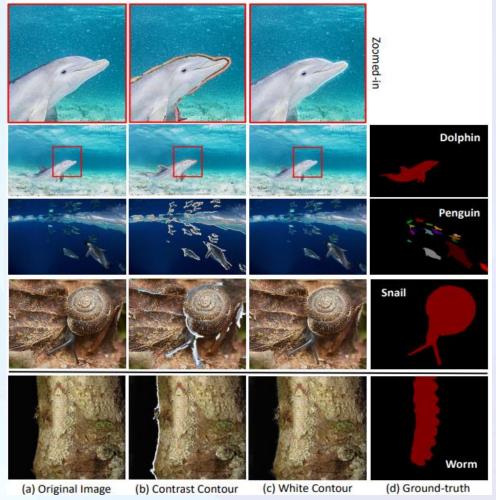
Method			COD10F	(NC4K			
		AP	AP50	AP75	AP	AP50	AP75	
Two- Stage	Mask R-CNN [41]	28.7	60.1	25.7	36.1	68.9	33.5	
	MS R-CNN [43]	33.3	61.0	32.9	35.7	63.4	34.7	
	Cascade R-CNN [44]	29.5	61.0	25.9	34.6	66.3	31.5	
	HTC [47]	30.9	61.0	28.7	34.2	64.5	31.6	
	BlendMask [46]	31.2	60.0	28.9	31.4	61.2	28.8	
	Mask Transfiner [64]	31.2	60.7	29.8	34.0	63.1	32.6	
One- Stage	YOLACT [49]	29.0	60.1	25.3	37.8	70.6	35.6	
	CondInst [65]	34.3	67.9	31.6	38.0	71.1	35.6	
	QueryInst [66]	32.5	65.1	28.6	38.7	72.1	37.6	
	SOTR [67]	32.0	63.6	29.2	34.3	65.7	32.4	
	SOLOv2 [51]	35.2	65.7	33.4	37.8	69.2	36.1	
	OSFormer [30]	42.0	71.3	42.8	44.4	73.7	45.1	
	CE-OST (Ours)	43.2	72.2	44.1	45.1	74.0	46.4	

Tab. State-of-the-art comparison on COD10K and NC4K dataset. The chosen backbone is the common ResNet-101.

4. Experiments – Ablation Study

- **PVT backbone stably holds the best performance** as its multi-scale feature extractor can well handle the various scales of CAMO++
- CAMO++ is the most intensive dataset, following by NC4K and COD10K

Method	Base-Model	COD10K			NC4K			CAMO++		
		AP	AP50	AP75	AP	AP50	AP75	AP	AP50	AP75
OSFormer	ResNet-50 [59]	41.0	71.1	40.8	42.5	72.5	42.3	19.0	33.8	18.3
	ResNet-50-550 [59]	-	-	-	-	-	-	20.1	36.3	19.3
	ResNet-101 [59]	42.0	71.3	42.8	44.4	73.7	45.1	20.6	34.4	20.2
	PVTv2-B2-Li [60]	47.2	74.9	49.8	_	-	-	27.7	44.7	27.9
	Swin-T [61]	47.7	78.6	49.3	-	-	-	22.3	36.6	21.8
CE-OST (Color Contrast)	ResNet-50 [59]	41.6	70.7	42.3	42.4	71.4	42.6	20.1	34.2	19.6
	ResNet-50-550 [59]	35.9	65.2	34.3	41.1	70.9	41.1	20.6	35.7	20.0
	ResNet-101 [59]	43.2	72.2	44.1	45.1	74.0	46.4	21.7	36.6	21.3
	PVTv2-B2-Li [60]	48.4	75.7	51.3	51.4	77.9	55.0	28.5	45.3	29.9
	Swin-T [61]	49.1	78.0	52.1	50.5	78.9	53.1	22.7	37.6	22.4
	ResNet-50 [59]	41.2	69.0	41.6	42.4	71.1	42.9	20.2	34.8	19.5
CE-OST (Brightness Addition)	ResNet-50-550 [59]	35.9	65.2	34.6	40.8	71.1	40.3	21.0	37.1	20.3
	ResNet-101 [59]	42.4	70.8	43.7	44.2	73.1	45.0	21.1	34.4	20.9
	PVTv2-B2-Li [60]	47.9	74.6	50.5	51.1	77.3	54.9	27.9	45.1	29.2
	Swin-T [61]	49.0	78.5	51.4	50.8	79.3	53.9	22.7	38.4	23.1


Qualitity visualization result on the CAMO++ testing set on our CE-OST-PVT. The confidence threshold is 0.5.

^{*}The first, second, and third best results are marked in red, blue, and green, respectively.

4. Experiments – Ablation Study

- Color Contrast shifts the color values to another value in the contrast range, bringing better distinguished contour views compared to Brightness Addition
- The contour emphasis is highly affected by the contour detection results

Exemplary contour emphasized images on CAMO++. The first rows are the zoomed-in regions.

5. Conclusion

In this work:

- We proposed CE-OST framework a Contour Emphasis approach for One-Stage
 Transformer-based model to address the instance segmentation task on camouflaged images
- Experimental results proves our SOTA results among the surveyed methods on CAMO++,
 NC4K, and COD10K datasets

In the future:

- Train the camouflaged specific Edge Detection model
- Extend our idea to other specific domains of medical imaging where the instances carry camouflaged features

CE-OST: Contour Emphasis for One-Stage Transformer-based Camouflage Instance Segmentation

Thanh-Danh Nguyen^{1,2}, Duc-Tuan Luu^{1,2}, Vinh-Tiep Nguyen^{†1,2}, and Thanh Duc Ngo^{1,2}

¹University of Information Technology, Ho Chi Minh City, Vietnam,

²Vietnam National University, Ho Chi Minh City, Vietnam,

{danhnt, tuanld, tiepnv, thanhnd}@uit.edu.vn, †corresponding author

Acknowledgements

